Research in Mathematics Instructional Technology Current Trends and Future Demands

Purpose and Research Questions

The purposes of this study are (1) to systematically and structurally synthesize existing studies on the impact of technology on teaching and learning mathematics using seven frameworks to provide structure to the review (TPACK, CFTK, Research Design, NCTM Principles, NCTM standards, sources of data, and outcomes) and (2) to determine the utility of each framework for such a synthesis. This analysis will attempt to answer at least ten questions.

- 1. What is the overall structure of research in mathematics instructional technology?
- 2. What is the overall nature of the research findings in mathematics instructional technology?
- 3. How can data sources used in mathematics instructional technology research be categorized?
- 4. What are the key outcomes from papers in mathematics instructional technology (organized by frameworks)?
- 5. How do data source categories align with study outcomes in mathematics instructional technology research?
- 6. How can teacher and student outcomes in mathematics instructional technology research be categorized?
- 7. What NCTM Principles are addressed in mathematics instructional technology research? To what degree, how, implicit/explicit.
- 8. Which TPACK Standards are addressed in mathematics instructional technology research?
- 9. What aspects of teacher knowledge are addressed in mathematics instructional technology research?
- 10. To what degree do the seven frameworks capture the scope of mathematics instructional technology research?

Sample

Whole Book	18
Book Chapter	83
Conference Proceedings	12
Report	66
Journal	570
Dissertation	611
Research N	1360
Non-Research N	430
Total N	1790

Frameworks

- 1. Outcomes
- 2. Teacher Knowledge
- 3. TPACK
- 4. Data Sources
- 5. Research Design
- 6. NCTM Principles
- 7. NCTM Standards

Types of Technology

Calculators/Probes: Non-Scientific Scientific Graphing TI-73/73+ TI-83/83+ TI-83/83+ TI-85/86 TI-92/92+/Voyage 200 TI-NSpire Casio FX-9860G/GII/GSIim Casio FX-9750GII/GAPlus Casio FX-9750GII/GAPlus HP 10s/33s/35s/39gs/40gs/48gII/50g HP SmartCalc 300s Other Graphing Calculator: Programming Apps CAS	Computer Software: Dynamic Geometry Software Graphing Software Algebraic Software Statistical Software Statistical Instructional Software Spreadsheet Software Presentation Software Applet Software Game/Puzzle Software Testing Software Student Response System SmartBoards
Symbolic Algebra Simulation	Decharge
Symbolic Calculus Statistics	Probes:
Networked-Handheld Devices Dynamic Geometry	Probeware
Internet: Virtual Manipulatives Online Applets Distance Learning Online Games/Puzzles Online Testing Software Online Tutorial Software Web Sites	 WebQuests Wiki Spaces Facebook/MySpace/Twitter Video Conferencing (e.g., Skype, Windows Messenger) Document Sharing Online Video Sharing Blogs

Outcomes

Interview Data

Journal Data:

Researcher Journal

Subject Journal

□ Non-Researcher/Non-Subject Journal (e.g., Teacher)

Focus Group Data Self-Report Data:

Other-Report Data:

Other:

Orientation Survey Data Poll/Census Survey Data

Orientation Survey Data Polls/Census Survey Data

NCTM Principles and Standards

NCTM Principle Addressed by Outcome of Interest	(Mark all that Apply)		
□ Implicit Learning (e.g., how students learn as opposed to how teachers etc. can impact learning)			
Implicit Teaching (e.g., how changes in teaching, classroom environment, etc. impact outcome of interest)			
□ Implicit • Equity (e.g., focus of intervention is that	students of multiple backgrounds learn mathematics better)		
□ Implicit Technology (e.g., how technology inclusion	on in the math. classroom impacts student learning of math.)		
□ Implicit Curriculum (e.g., how a new/focused, coherent curriculum impacts student learning)			
□ Implicit Assessment (e.g., how assessment practi	ces can be used to support teaching and learning of math.)		
NCTM Principles not addressed by Outcome of Interest			
NCTM Standards Addressed by Outcome of Interest	(Mark all that Apply)		
 Number: Representations, Relationships, Systems Number Operations: Meaning, Relationships Number Computation: Fluency, Estimation Algebra: Patterns, Relations, Functions Algebra: Represent, Analyze Situations w/ Symbols Algebra: Math Modeling to Understand Relationships Algebra: Analyze Change in Contexts Geometry: 2D, 3D Shape Characteristics Geometry: Specify Locations, Coordinates Geometry: Transformations, Symmetry Geometry: Visualization, Spatial Reasoning, Modeling Measurement: Measurable Attributes, Units, Systems, Pro- 	Problem Solving: Solve Contextual Problems Problem Solving: Apply, Adapt Strategies Problem Solving: Monitor, Reflect on Process Reasoning, Proof: Recognition as Fundamental Reasoning, Proof: Make Conjectures Reasoning, Proof: Develop Argument, Proof Reasoning, Proof: Select Types, Methods Communication: Organize Mathematical Thinking Communication: Provide Coherence, Clarity Communication: Express Mathematical Ideas Precisely occesses		
Measurement: Techniques, Tools, Formulas	Connections: Recognition within Mathematical Ideas Connections: Math Ideas Produce Coherent Whole		
Data/Probability: Formulate Questions	Connections: Math Ideas in Non-Math Contexts		
Data/Probability: Select Methods	Representations: Organize, Record, Communicate Mathematical Ide		
Data/Probability: Inference Prediction	Representations: Select, Apply to Solve Problems		
Data/Probability: Probability	Representations: Modeling, Interpreting Phenomena		
NCTM Standards Not Addressed			

Qualitative Research Design

Quantitative F

Research Design		
Research Design:		
Sampling Method:		
Group Assignment:		
Outcome Measure(s	Used:	
Validated Instru	ment from Li	terature
Modified Instru	nent	
Instrument Desi	gned for this	Study
🗖 Teacher-Made II	nstrument	
🗖 Behavior (e.g., R	etention, Att	endance)
Sample Sizes		
Total (Sum) Control Sa	mple Size ("(0" = Not Ap
Number of Control Gr	oups:	
Total (Sum) Treatmen	t Sample Size	:
Number of Treatment	Groups:	
Sample Units:		
Type(s) of Reliabi	lity	Type(s)
Addressed		Constr
Internal Consistence	 v	Conte
Alternate Forms	1	
		Predic
Test-Retest		Conve
Can't Tell		Discrin
		🗹 Validit
- Not Addressed		🗆 Validit
		🗆 Validit
		Additi
Threats to Validity A	ddressed	
Implicit • Co	onstruct Valid	lity Threats
Implicit Internal Validity Threats A		
Implicit External (Generalizability		
Implicit • St	atistical Cond	lusion Vali
Threats to Validity	Not Address	ed

Research Design			
 Standardized Instrument Grades GPA Graded Homework Other: 			
plicable):			
of Test Item Validity Addressed uct Validity nt Validity rrent Criterion Validity tive Criterion Validity rgent Validity ninant (Divergent) Validity y simply asserted or cited from test manual y confused with reliability y Not Addressed onal Comments about Validity/Reliability:			
Addressed ddressed) Validity Threats Addressed dity Threats Addressed			

RUNNING HEAD: MATHEMATICS TECHNOLOGY RESEARCH

Research in Mathematics Instructional Technology: Current Trends and Future Demands

A paper proposal presented to the National Council of Teachers of Mathematics

Research Pre-session

April 19-21, 2010

Abstract

This study integrates three frameworks to examine the treatment of teacher knowledge as it relates to technology implementation in mathematics: research design framework, teacher knowledge (CFTK), and technology integration (TPACK). These frameworks provide a robust perspective for analyzing instructional technology effectiveness and improving classroom instruction.

Conceptual or Theoretical Perspective

Teachers use instructional technology for online courses, video conferencing, electronic portfolios, and other exploratory projects. Literature reviews are important tools that teachers can use to evaluate instructional technology and develop strategies for its effective use. A systematic review of literature can make such evaluations far easier and more effective by synthesizing the results of the studies on a given topic using well-articulated methodological processes. The purpose of this study is to examine the utility of integrating three lenses into a systematic review of instructional technology: 1) research design, 2) teacher knowledge, and 3) levels of implementation.

Research Design

The complex nature of questions regarding instructional technology effectiveness require a variety of research designs such as (1) experimental or quasi-experimental studies, (2) largescale studies, (3) studies with sufficient statistical information to be included in meta analysis and mixed-methodology studies, (4) studies with rich analysis of student content knowledge, and (5) studies that address the complexities of learners, classrooms, and schools (Bell, Schrum, & Thompson, 2009; Means, Wagner, Haertel, & Javitz, 2003).

Comprehensive Framework of Teacher Knowledge

CFTK (Ronau & Rakes et al., 2009; Ronau, Wagner, & Rakes, 2009; Ronau & Taylor et al., 2009) identifies six aspects of teacher knowledge, organized into a three-dimensional system (Figure 1) that captures complex interactions not defined by any other single teacher knowledge framework in existence. These three dimensions are: Field, comprised of the aspects Subject Matter Knowledge and Pedagogical Knowledge; Mode, consisting of the aspects Discernment

and Orientation; and Context, composed of the aspects Individual and Environment.

Figure 1. CFTK framework of teacher knowledge as a three-dimensional structure. Technology, Pedagogy, and Content Knowledge

The TPACK framework provides a structure to guide research into the nature and development of teacher knowledge for teaching with technologies. Niess and colleagues (Niess, Lee, Sadri, & Suharwoto, 2006; Niess, Lee, & Sadri, 2007; Niess et al., 2009) described teacher growth for technology integration in the classroom through five progressive stages: (1) Recognizing, (2) Accepting, (3) Adapting, (4) Exploring, and (5) Advancing. Figure 2 portrays the levels that teachers engage in as they expand their knowledge and understandings in ways that merge multiple knowledge bases - technology, content, and pedagogy.

Figure 2. Model of teacher thinking and understanding as that knowledge develops toward the intersection identified as important by TPACK.

On the left side of the graphic, the figure highlights PCK as the intersection of pedagogy and content. As the knowledge of technology expands and begins to intersect with pedagogical and content knowledge, the teacher knowledge base described as TPACK emerges: This is a space in which teachers actively engage in guiding student learning of mathematics with appropriate technologies.

Integrating CFTK and TPACK

These two frameworks may seem to be competing images of the knowledge base teachers need for teaching with technology. However, a combination of the two frameworks may enhance our understanding of how technology integration and teacher knowledge interact in a learning environment. TPACK defines a teacher knowledge framework further described by a series of levels for technology integration while CFTK provides insight into the teacher knowledge aspects and their interactions needed to address the TPACK Guidelines.

Research Question(s) and Design

In this review, we asked what types of research designs were used and how well the CFTK and TPACK models explained the teacher knowledge needed to integrate technology effectively in mathematics. Three criteria were used to select studies for the review: (1) Studies were found in scholarly, peer-reviewed journals, reports, dissertations, or conference proceedings, (2) Studies involved the use of technology in an educational setting, and (3) Studies focused on mathematics education.

Data Collection Techniques and Analyses

Several electronic databases related to education and psychological sciences were searched using a variety of keywords (see Table 1). These included the EBSCOhost databases: Academic Search Premier, Education Administration Abstracts, ERIC, Middle Search Plus, Psychology and Behavioral Sciences Collection, PsycINFO, Sociological Collection, and Teacher Reference Center; two H.W. Wilson databases: Education Full Text and the Social Sciences Index; JSTOR; five ProQuest databases: Career and Technical Education, Dissertations & Theses, Ethnic NewsWatch, GenderWatch, and Research Library; the IEEE Electronic Library; and three ISI Web of Knowledge databases: the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts and Humanities Citation Index. The literature search identified a population of 307 journal articles, reports, dissertations, or conference papers dating from 1985 to 2009.

Search Terms	or Electronic Databases			
EBSCO	ProQuest	JSTOR	IEEE Explore	H.W. Wilson
(Technology	(Mathematics or Mathematical	(((Education and	Education and	Education and
or	Ability or Mathematics	(Math) and	Mathematics and	(Technology or
"Educational	Education or Mathematics	(Technology)))	(Technology or	"Educational
Technology"	Teachers or Mathematical		"Educational	Technology") and
) and	Programming)		Technology")	"Educational
Education				Technology / Use" or
and Math	and			"Educational
				Technology / Teacher
	(Science & Technology Policy			Education" and
	or Science and Technology or			Mathematics or
	Technology or Technology			"Mathematics
	Assessment or Technology			Education"
	Education or Technology			
	Standards or Technology			
	Transfer or Technology			
	Acquisition or Technology			
	Adoption or Educational			
	Technology)			
	and			
	(Education or Education &			
	Schools or Education and			
	Schools or Education			
	Discrimination or Education			
	For All Handicapped Children			
	Act 1975-Us or Education			
	History or Education			
	Philosophy)			

Table 1Search Terms for Electronic Databases

Analysis Strategies

Studies identified with a quantitative research design were coded as being either randomized or quasi-experimental. We also recorded outcome measures, reliability measures, and validity measures as well as selection mechanisms and use of measures to control preexisting differences. Studies identified as qualitative were coded by their research design (e.g., narrative/historical, biography, design study, phenomenology, ethnography, grounded theory, or case study), the methodology employed (e.g., covert/overt observation, interview, or focus group), alignment of the study methodology with outcome(s) of interest, and evidence of trustworthiness. For studies with the purpose of theory development, we recorded as much applicable information as possible and marked the rest as "not applicable." Inter-rater reliability was managed in two ways. First, to reduce as much variation as possible in coding decisions, we developed coding tables with closed response systems. Second, each study was coded by at least two people.

Summary of Findings

Our pilot results indicate that methodological reporting may limit the ability of many studies to meet the needs of researchers and teachers. Furthermore, we examined the treatment of teacher knowledge as it related to technology implementation in mathematics and found that only half of our pilot sample addressed teacher knowledge at all; of that half, attention was given almost exclusively to pedagogical knowledge, content knowledge, or PCK. We determined from these results that further use of the CFTK and TPACK frameworks combined with a consideration for design and methodology offer a useful structure to examine educational technology research in ordered detail.

References

- Ball, D. L. (1988). Research on teaching mathematics: Making subject matter knowledge part of the equation. East Lansing, MI: National Center for Research on Teacher Education.
- Ball, D. L. (1995). Developing mathematics reform: What don't we know about teacher learning--but would make good working hypotheses? NCRTL craft paper 95-4. East Lansing, MI: National Center for Research on Teacher Education.
- Ball, D. L. (1996). Teacher learning and the mathematics reforms: What we think we know and what we need to learn. *Phi Delta Kappan*, *77*, 500.
- Ball, D. L. & Bass, H. (2005). Learning the mathematical work of teaching. Paper presented at the *Appalachian Association of Mathematics Teacher Educators Conference*.
- Ball, D.L., Thames, M.H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? *Journal of Teacher Education*, *59*, 389 407.
- Bell, L., Schrum, L., & Thompson E. A. (Eds.). (2009). Framing the research on digital technologies and student learning in mathematics. Charlotte, NC: Information Age Publishing.
- Cavanaugh, C., Gillan, K. J., Bosnick, J., Hess, M., & Scott, H. (2008). Effectiveness of interactive online algebra learning tools. *Journal of Educational Computing Research*, 38, 67-95.
- Davis, B., & Simmt, E. (2003). Understanding learning systems: Mathematics education and complexity science. *Journal for Research in Mathematics Education, 34*, 137-167.
- Davis, B., & Sumara, D. J. (1997). Cognition, complexity, and teacher education. *Harvard Educational Review*, 67, 105-125.

- Davis, B., & Sumara, D. J. (2001). Learning communities: Understanding the workplace as a complex system. *New Directions for Adult and Continuing Education, 2001*, 85-95.
- Davis, R. B. (1992). Reflections on where mathematics education now stands and on where it may be going. In D. A. Grouws (Ed.), *Handbook of research on mathematics teaching and learning* (pp. 724-734). Reston, VA: National Council of Teachers of Mathematics.
- Ding, C., & Sherman, H. (2006). Teaching effectiveness and student achievement: Examining the relationship. *Educational Research Quarterly*, *29*, 40-51.
- Ellington, A. J. (2003). A meta-analysis of the effects of calculators on students' achievement and attitude levels in precollege mathematics classes. *Journal for Research in Mathematics Education, 34*, 433-463.
- Ellington, A. J. (2006). The effects of non-CAS graphing calculators on student achievement and attitude levels in mathematics: A meta-analysis. *International Journal of Instructional Media*, 106, 16-26.
- Hill, H. C., & Ball, D. L. (2004). Learning mathematics for teaching: Results from California's mathematics professional development institutes. *Journal for Research in Mathematics Education*, 35.
- Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking Pedagogical Content Knowledge:
 Conceptualizing and measuring teachers' topic-specific knowledge of students. *Journal for Research in Mathematics Education*, 29, 372-400.
- Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers' mathematical knowledge for teaching on student achievement. *American Educational Research Journal*, 42, 371-406.
- Hill, H. C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teachers' mathematics knowledge for teaching. *Elementary School Journal*, 105.

- Means, B., Wagner, M., Haertel, G. D., & Javitz, H. S. (2003). Studying the cumulative impacts of educational technology. In G. D. Haertel & B. Means (Eds.), *Evaluating educational technology: Effective research designs for improving learning* (pp. 230-256). New York: Teachers College Press.
- Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. *Teachers College Record*, *108*, 1017-1054.
- Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. *Teaching and Teacher Education, 21,* 509-523.
- Niess, M. L. (2008). Mathematics teachers developing Technology, Pedagogy and Content Knowledge (TPACK). Paper presented at the *Society of Information Technology and Teacher Education (SITE)* Annual Conference, Las Vegas, NV.
- Niess, M. L., Lee, K., & Sadri, P. (2007). Dynamic spreadsheets as learning technology tools: developing teachers' technology pedagogical content knowledge (TPCK). Paper presented at the annual meeting of the *American Educational Research Association*, Chicago, IL.
- Niess, M. L., Lee, K., Sadri, P., & Suharwoto, G. (2006). Guiding inservice mathematics teachers in developing a Technology Pedagogical Knowledge (TPCK). Paper presented at the annual meeting of the *American Educational Research Association*, San Francisco, CA.
- Ronau, R. N., Rakes, C. R., Wagener, L., & Dougherty, B. (2009, February). A comprehensive framework for teacher knowledge: Reaching the goals of mathematics teacher preparation. Paper presented at the annual meeting of the Association of Mathematics Teacher Educators, Orlando, FL.

- Ronau, R. N., Taylor, P. M., Dougherty, B. J., Pyper, J., Wagener, L. L., & Rakes, C. R. (2009). *A comprehensive framework for teacher knowledge: A lens for examining research.*Manuscript in preparation.
- Ronau, R. N., Wagener, L., & Rakes, C. R. (2009, April). A comprehensive framework for teacher knowledge: A lens for examining research. In R. N. Ronau (Chair), *Knowledge for Teaching Mathematics, a Structured Inquiry*. Symposium conducted at the annual meeting of the American Educational Research Association, San Diego, CA.
- Schoenfeld, A. H. (1982, March). Beyond the purely cognitive: Metacognition and social cognition as driving forces in intellectual performance. Paper presented at the annual meeting of the *American Educational Research Association*, New York.
- Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), *Handbook of research on mathematics teaching and learning* (pp. 334-371). Reston, VA: National Council of Teachers of Mathematics.
- Schön, D. A. (1995). The new scholarship requires a new epistemology. Change, 27, 26-35.
- Shulman, L. S. (1986). Those who understand: A conception of teacher knowledge. *American Educator*, *10*, 9-15.
- Suh, J., & Moyer, P. S. (2007). Developing students' representational fluency using virtual and physical algebra balances. *The Journal of Computers in Mathematics and Science Teaching*, 26, 155-173.
- Tashakkori, A., & Teddlie, C. (1998). *Mixed methodology: Combining qualitative and quantitative approaches*. Thousand Oaks, CA: Sage Publications.

Thompson, A. D., & Mishra, P. (2007). Breaking news: TPCK becomes TPACK! Journal of

Computing in Teacher Education, 24, 38, 64.

Whitehurst, G. J. (2002, October). Evidence-based education. Presentation given at the annual meeting of the *School Accountability Conference*, Orlando, FL. Retrieved on May 5, 2006, from http://www.ed.gov/offices/OERI/presentations/evidencebase.html